

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 8.4 IJAR 2021; 7(1): 396-399 www.allresearchjournal.com Received: 13-11-2020 Accepted: 15-12-2020

Dr. Meenakshi Shankar

Senior Resident, Department of Pathology, Vardhman Mahavir Medical College& Safdarjung Hospital, New Delhi, India

Dr. Mukul Singh

Professor, Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India

Corresponding Author: Dr. Mukul Singh Professor, Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India

Vitamin D status in pregnant and nonpregnant reproductive women: A comparative study

Dr. Meenakshi Shankar and Dr. Mukul Singh

Abstract

Objective: Comparison of vitamin D status between pregnant females and nonpregnant reproductive women.

Study Design: We conducted retrospective analysis of 91 pregnant and 221 nonpregnant women aged 19–44 years at Safdurjung hospital between February to May 2020 in Lab medicine.

Results: We included pregnant women age ranged from 20-39years and nonpregnant women age ranged from 22-42 years. The mean \pm SD of 25(OH) D in pregnant and nonpregnant women were 23.3 \pm 4.5ng/ml (range 8.1 to 43.3) and 18.7 \pm 5.3ng/ml (range 5.4 to 36.3) respectively. Vitamin D deficiency, insufficiency and sufficiency were found to be 2.2%, 74.7% and 23% and 3.6%, 90.9% and 13.2% in pregnant and nonpregnant females, respectively.

Conclusion: Adult women of childbearing age have a high prevalence of vitamin D insufficiency as compare to pregnant women which may be attributed due intake of calcium and vitamin D supplementation during pregnancy.

Keywords: vitamin D deficiency, pregnancy, vitamin D receptor, reproductive women

Introduction

Vitamin D plays a vital role in growth and development of maternal and infant health. The reemergence of childhood rickets and other disorder related to bone mineralization are associated with severe vitamin D deficiency ^[1, 2]. Vitamin D readily crosses the placenta hence fetal and newborn vitamin D status is almost dependent on vitamin D from the mother ^[3, 4]. Therefore, cord blood 25(OH) D levels are strongly correlated with maternal vitamin D status ^[5]. Vitamin D secretion in breast milk is limited, therefore lactating women require sufficient serum 25(OH)D levels to support vitamin D levels in nursing infants ^[6, 7]. Many researchers also linked hypovitaminosis D in utero or in early life increases the risk of childhood respiratory infection, wheezing, multiple sclerosis, type 1 diabetes, schizophrenia, and placental development and functions ^[8-16].

Hypovitaminosis D in adults have also been linked to autoimmune disorders, musculoskeletal disorders, cardiovascular disease, infection, cancer etc. ^[17-20]Vitamin D receptors (VDR) are found in most tissues and cells throughout the body and it also regulates more than thousand human genes ^[21]. Vitamin D is fat soluble vitamin and mainly synthesis in cutaneous tissues via exposure to sunlight and dietary intake contributed to very low percentage(5%) ^[22]. It is stored in liver and adipocytes ^[22]. Vitamin D status in a person depends on many factors such as, geographic zone and season, race/ethnicity, cultural and religious factors, dietary habits, smoking, sunscreen use, body mass index, education etc ^[23, 24].

Until recently, serum 25(OH)D levels <20ng/mL appeared adequate based on improved skeletal outcomes but increasing evidence suggests that >30ng/mL or even40ng/mL may be required for optimum health of a person ^[5, 25].

A high prevalence of vitamin D insufficiency has been documented in pregnant and lactating women ^[26-28]. These studies have raised awareness of higher doses of vitamin D supplementation that may be required to improve maternal and infant outcomes.

Aim: In this study, we sought to measure vitamin D status in pregnant females and nonpregnant reproductive women.

In this retrospective study a total of 91 pregnant and 221 nonpregnant females were included. They were recruited in Lab medicine department of Pathology, VMMC and Safdarjung Hospital, during the period from February to May 2020.

Exclusion criteria: Age <18year, history of thyroidectomy, radio-Iodine ablation, history of malabsorption disorder, H/o chronic kidney, liver, thyroid disease, H/o diabetes mellitus, dermatological disease, rheumatological disease, alcoholics. Inclusion criteria: Age >18 years, no history of thyroid problem, no history of chronic illness. After exclusion criteria laboratory investigations (serum vitamin D)was done.

After aseptic precaution, blood sample was collected by venipuncture at the fasting state, the serum was separated by centrifugation and then stored at -80oC for a week or until analysed. Vitamin D status was evaluated by measurement of serum 25(OH)D levels by chemiluminescent immunoassay method (Seimens Adiva centure CP system). Serum 25(OH)D levels were considered as deficient when it

is <10ng/ml, insufficient between 10-30ng/ml and >30ng/ml sufficient.

Statistical Analysis: Data were statistically analysed by SPSS version-23.0 for Windows. The mean and the standard deviation (SD) for all the variables were calculated. The differences between mean values for each tested variable have been tested by student's "t" test. Results considered significant when p value<0.05.

Result

We included pregnant women age ranged from 20-39years and nonpregnant women age ranged from 22-42 years. In this study out of 91pregnant females, 10.9%(10)females were muslim and out of 221 nonpregnant females, 9.9%(22/221)females were muslim with religious practice of wearing burka. (Table-1)

The mean \pm SD of 25(OH) D in pregnant and nonpregnant women were 23.3 \pm 4.5ng/ml (range 8.1 to 43.3) and 18.7 \pm 5.3ng/ml (range 5.4 to 36.3) respectively. Pregnant and nonpregnant women showing vitamin D deficiency, insufficiency and sufficiency were shown in Table-2

Table 1: Demographic profile

Variants	Pregnant Women (n=91)	Nonpregnant Women (n=221)	P Value
Age 18-34YEARS Mean ± SD 35-44YEARS Mean± SD	n=77/91(91%) 23.4± 3.2years n=14/91(9%) 36.1± 3.3years	n=153/221(69.2%) 25.4± 3.4years n=68/221(30.7%) Mean 38.4± 4.5years	0.56
Cultural Habits BURKA YES NO	10/91(10.9%) 81/91(89.1%)	22/221 (9.9%) 199/221(90.04%)	0.37
Calcium And Vit D Supplementation	100%	0%	

Table 2: Serum 25-hydroxyvitamin D levels

Variants	Pregnant Women (N=91)	Nonpregnant Women (N=221)	P Value	
Age 18-44 Years	Mean \pm SD	Mean \pm SD		
	23.3±4.5ng/ml	18.7±5.3ng/ml		
	Deficient 2/91 (2.2%)	Deficient 8/221(3.6%)	0.06	
	Insufficient68/91(74.7%)	Insufficient 201/221(90.9%)		
	Sufficient 21/91(23%)	Sufficient 12/221(13.2%)	L	
Cultural Habits Burka Yes	17.4 ± 3.6 ng/ml (Mean \pm SD)	15.8±4.2ng/ml (Mean± SD)		
	Deficient 1/10(10%)	Deficient 2/22(9%)	0.35	
	Insufficient 9 /10(90%)	Insufficient 19/22(86%)		
	Sufficient 0/10	Sufficient 1/22 (4.5%)		

Discussion

Vitamin D deficiency in pregnancy as well as normal adult women is a public health problem ^[29]. Vitamin 25(OH) D deficiency/ insufficiency in pregnant women ranges from 5%-83.6% [30, 31]. In India 84.3% of urban and 83.6% of rural women had 25 (OH)D values below <20ng/ml [32] Various studies have found that hypovitaminosis D leads to unfavourable outcomes in pregnant females and in their offspring. Hence, they are classified into high-risk group ^[33]. Our results are similar to the studies by Bodnar LM et al and Xiang F et al^[30, 31] In our study we found 76.9% prevalence of 25 hydroxyvitamin D deficiency /insufficiency in pregnant women. We observe high prevalence (94%) of hypovitaminosis D nonpregnant adult female then other studies. We found high prevalence of vitamin D deficiency in nonpregnant as compare to pregnant which may be explained due to calcium and vitamin D supplementation is given during pregnancy. This study is conducted in northern part of India during summer time having very good exposure of sunlight. However such high levels of sunshine still not sufficient for vitamin D levels in body. In females many other factors contributes to deficiency like duration of exposure to sunlight, lack of outdoor activities, clothing habits, use of sunscreen, air pollution and vit D status before the pregnancy and after pregnancy ^[22].

Maternal vitamin D deficiency during pregnancy has adversely effects both mother and child ^[4, 6]. As we know 25(OH)D readily crosses the placenta and can be correlated with fetal cord blood ^[3, 5] Gordon *et al* in their study found that one third of infants and toddlers with a serum 25(OH)D level <50 nmol/L(20ng/ml) were found to have some evidence of bone demineralization.^[34] Moreover, rickets is seen more in infants with serum 25(OH)D levels less then to 50 nmol/L(20ng/ml) ^[1, 2, 5]. Most investigators and clinicians would agree that, minimum of 50 to 75 nmol/L 25(OH)D There is mounting evidence that 25(OH) D levels ≥ 75 nmol/L might also be required for pregnant women and infants ^[6, 8-10].

Therefore, by measuring routinely serum 25(OH)D levels during pregnancy and early childhood may help in prevention of many problems.

We conclude that adult women of childbearing age having 25(OH)D levels <20 ng/ml, a daily vitamin D supplementation is recommended ^[36, 37] Additionally, because duration of vitamin D supplementation is important, therefore it is wise to start vitamin D supplementation a few months before becoming pregnant.

This study is cross sectional study, hence causal link cannot be found. In our study we concluded high prevalence of hypovitaminosis D in nonpregnant women hence public health awareness is needed. We also recommend supplementation of vitamin D before and after pregnancy is essential for both mother and fetus wellbeing.

Conclusion

We concluded that there is high prevalence of hypovitaminosis D seen in nonpregnant females than pregnant women.

Limitations and Recommendations

The limitations of this study the small number of subjects, therefore, further prospective large clinical studies are required to verify the results

Financial Support and Sponsorship Nil.

Conflicts Of Interest

There are no conflicts of interest.

Reference

- 1. Weisberg P, Scanlon K, Li R, Cogswell ME. Vitamin D and health in the 21st century: bone and beyond. Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003. Am J Clin Nutr 2004;80:1697S-1705S
- 2. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest 2006;116:2062-2072.
- 3. Salle BL, Delvin EE, Lapillonne A, Bishop NJ, Glorieux FH. Perinatal metabolism of vitamin D. Am J Clin Nutr 2000;71:1317S-1324S.
- 4. Hollis BW, Wagner CL. Nutritional vitamin D status during pregnancy: reasons for concern. CMAJ 2006;174:1287-1290.
- 5. Greer FR. 25-Hydroxyvitamin D: functional outcomes in infants and young children. Am J Clin Nutr 2008;88:529S-533S.
- 6. Kovacs C. Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr 2008;88:520S-528S.
- 7. Hollis BW, Wagner CL. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr 2004; 80:1752S-1758S.
- 8. Camargo CA Jr. Rifas-Shiman SL, Litonjua AA *et al.* Maternal intake of vitamin D during pregnancy and risk

of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 2007;85:788-795.

- 9. Devereux G, Litonjua AA, Turner SW *et al.* Maternal vitamin D intake during pregnancy and early childhood wheezing. Am J Clin Nutr 2007;85:853-859.
- Camargo CA Jr. Ingham T, Wickens K *et al.* Cord blood 25-hydroxyvitamin D levels and risk of childhood wheeze in New Zealand. Am J Respir Crit Care Med 2008;177:A993.
- 11. Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr 2004;58:563-567.
- 12. Karatekin G, Kaya A, Salihoğlu O, Balci H, Nuhoğlu A. Association of subclinical vitamin D deficiency in newborns with acute lower respiratory infection and their mothers. Eur J Clin Nutr 2009;63:473-477.
- 13. Zipitis CS, Akobeng AK. Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child 2008;93:512-517.
- Munger KL, Zhang SM, O'Reilly E *et al*. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62:60-65. [PubMed: 14718698]
- 15. McGrath J, Saari K, Hakko H, *et al.* Vitamin D supplementation in the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophr Res 2004;67:237-245.
- Evans KN, Bulmer JN, Kilby MD, Hewison M. Vitamin D and placental-decidual function. J Soc Gynecol Investig 2004;11:263-271.
- 17. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol 2017;7:697.
- Wang TJ, Pencina MJ, Booth SL, *et al.* Vitamin D deficiency and risk of cardiovascular disease. Circulation 2008;117:503-511.
- 19. Ginde AA, Mansbach JM, Camargo CA Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infections in the third national health and nutrition examination survey. Arch Intern Med 2009;169:384-390.
- 20. Garland CF, Garland FC, Gorham ED, *et al*. The role of vitamin D in cancer prevention. Am J Public Health 2006;96:252-261.
- 21. Tavera-Mendoza LE, White JH. Cell defenses and the sunshine vitamin. Sci Am 2007;297:62-65. 68–70,72.
- 22. Zhao Y, Miao W, Li C, Yu X, Shan Z, *et al.* Dynamic changes in serum 25-hydroxyvitamin D during pregnancy and lack of effect on thyroid parameters. 2014;9(3):e 90161.
- 23. Tsiaras WG, Weinstocks MA. Factors influencing vitamin D status. Acta Derm Venereol 2011;91(2):115-124.
- 24. Thuesen B, Husemoen L, Fenger M, Jakobsen J, Schwarz P, *et al.* Determinants of vitamin D status in a general population of Danish adults. Bone 2012;50(3):605-610.
- 25. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 2006;84:18-28.

- 26. Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, Roberts JM. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 2007;137:447-452.
- Looker AC, Pfeiffer CM, Lacher DA, Schleicher RL, Picciano MF, Yetley EA. Serum 25- hydroxyvitamin D status of the US population: 8–1994 compared with 2000–2004. Am J Clin Nutr 2008;88:1519-1527.
- 28. Dawodu A, Wagner CL. Mother-child vitamin D deficiency: an international perspective. Arch Dis Child 2007;92:737-740.
- 29. McAree T, Jacobs B, Manickavasagar T, Sivalokanathan S, Brennan L *et al.* Vitamin D deficiency in pregnancy still a public health issue. Matern Child Nutr 2013;9(1):23-30.
- 30. Bodnar LM, Catov JM, Simhan HN, Holick MF, Powers RW *et al.* Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 2007;92(9):3517-3522.
- 31. Xiang F, Jiang J, Li H, Yuan J, Yang R *et al.* High prevalence of vitamin D insufficiency in pregnant women working indoors and residing in Guiyang, China. J Endocrinol Invest 2013;36(7):503-507.
- 32. Alok Sachan, Renu Gupta, Vinita Das, Anjoo Agarwal, Pradeep K Awasthi, Vijayalakshmi Bhatia. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am J Clin Nutr 2005;81(5):1060-4.
- 33. Urrutia Periria M, Sole D. Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and childhood. Rev Paul Pediatr 2015;33(1):104-113.
- 34. Gordon CM, Feldman HA, Sinclair L *et al.* Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med 2008;162:505-512.
- 35. Vieth R, Bischoff-Ferrari H, Boucher BJ *et al.* The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr 2007;85:649-650.
- 36. Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122:1142-1152.
- 37. Vitamin D. editor. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press 1999, 250-287.