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Abstract 

An ordered set 𝑊 = (𝑤1, … , 𝑤𝑘) ⊆ 𝑉(𝐺) vertices of 𝐺 is called a resolving set or locating set for 𝐺  if 
every vertex is uniquely determined by its vector of distance to the vertices in 𝑊. A resolving set of 

minimum cardinality is called a basis for 𝐺 and this cardinality is the metric dimension or location 

number of 𝐺, denoted by 𝛽(𝐺). In this paper, we study the metric dimension of certain wheel related 

graphs, namely m-level wheels, an infinite class of convex polytopes and antiweb-gear graphs denoted 

by 𝑊𝑛,𝑚, ℚ and 𝐴𝑊𝐽2𝑛, respectively. We prove that these infinite classes of convex polytopes 

generated by wheel, denoted by ℚ𝑛 also gives a negative answer to an open problem proposed by 

Imran et al. (2012). 

 
Keywords: metric dimension, context, wheel related graphs 

 

Introduction 

Metric dimension is a parameter that has appeared in various applications of graph theory, as 

diverse as, pharmaceutical chemistry robot navigation combinatorial optimization 

networking, facility location problems and sonar and coast guard Loran to name a few. The 

metric dimension of graph has been found of key importance of the evolution of cooperation. 

A basic problem in chemistry is to provide mathematical representation for a set chemical 

compound can be represented by a labeled graph whose vertex and edge labels specify the 

atom and bond types, respectively. This, a graph-theoretic interpretation of this problem is to 

provide representation for the vertex of a graph in such a way that distinct vertices have 

distinct representation. The distance 𝑑(𝑢, 𝑣) between two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) in a 

connected graph 𝐺 is the length of a shortest path between them, while diameter of 𝐺, 

denoted by 𝑑𝑖𝑎𝑚(𝐺) is the maximum distance between any pair of vertices 𝑢, 𝑐 ∈ 𝑉(𝐺). Let 

𝑊 = {𝑤1, … . , 𝑤𝑘} be an ordered set of vertices of 𝐺 and let 𝑣 be a vertex of. the 

representation 𝑟(𝑣|𝑊)𝑜𝑓 𝑣 with respect to 𝑊 is the 𝑘 − 𝑡𝑢𝑝𝑖𝑙 
(𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), … , 𝑑(𝑣, 𝑤𝑘)). If distinct vertices of 𝐺 have distinct representations with 

respect to 𝑊, then 𝑊 is called a resolving set or locating set for 𝐺 [3]. A resolving set of 

minimum cardinality is called a basis for 𝐺 and his cardinality is the metric dimension of 𝐺, 

denoted by 𝛽(𝐺). The concept of resolving sets and metric dimension have previously 

appeared in the literature.  

For a given ordered set of vertex 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘} of a graph 𝐺, then 𝑖𝑡ℎ component if 

𝑟(𝑣|𝑊) is 0 only if 𝑤𝑖 = 𝑣. Thus, to show that W is a resolving set it suffices to verify that 

𝑟(𝑥|𝑊) for each pair of distinct vertices 𝑥, 𝑦 ∈ 𝑉(𝐺)\𝑊. 
A useful property in finding the 𝛽(𝐺) is the following lemma. 

Let 𝑊  be a resolving set for a connected graph 𝐺 and 𝑢, 𝑣 ∈ 𝑉(𝐺). If 𝑑(𝑢, 𝑤) = 𝑑(𝑣, 𝑤) for 

all vertex 𝑤 ∈ 𝑉(𝐺){𝑢, 𝑣}, 𝑡ℎ𝑒𝑛 {𝑢, 𝑣}⋂𝑊 ≠ ∅. 

Let ℱ denotes family of connected graphs 𝐺𝑛: ℱ = (𝐺𝑛)𝑛≥1 depending on 𝑛 as follows: the 

order |𝑉(𝐺)| = 𝜑(𝑛) and lim
𝑛→∞

𝜑(𝑛) = ∞. if there exist a constant 𝐶 > 0 such that 𝛽(𝐺𝑛) ≤

𝐶 for every 𝑛 ≥ 1, then we shall say that ℱ has bounded metric dimension; otherwise ℱ has 

unbounded metric dimension. 

If all graphs in ℱ have the same metric dimension (which does not depend on 𝑛), ℱ is called 

a family with constant metric dimension. The families of graph with constant metric 

dimension were discussed previously in then metric dimension of several classes of vertex 
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polytopes has been discussed in In this paper, we study the metric dimension of certain wheel related graphs, namely m-level 

wheel, an infinity class of convex polytopes defined in and antiweb-gear graphs denoted by 𝑊𝑛,𝑚, ℚ 𝑎𝑛𝑑 𝐴𝑊𝐽2𝑛, respectively. 

The study of an infinity class of vertex polytopes gives a negative answer to an open problem proposed in We prove that these 

infinity classes of wheel related graphs have unbounded metric dimension. 

 

Metric dimension of m-level wheels 

Denoting by 𝐺 + 𝐻 as join of two graphs, a wheel graphs denoted by 𝑊𝑛,1 ≅ 𝐶𝑛,1 + 𝐾1, where 𝐶𝑛,1: 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1 𝑓𝑜𝑟 𝑛 ≥ 3 

is a cycle of length n. For our convenience, we denote the outer cycle of the wheel by 𝐶𝑛,1. It is provided in [3] that 𝛽(𝑊𝑛,1) =

[
2𝑛+2

5
]  𝑓𝑜𝑟 𝑚 ≥ 7, imply that wheels have unbounded metric dimension. 

Suppose 𝐶𝑛,1 is an outer cycle of length 𝑛 𝑜𝑓 𝑊𝑛,1. If B is a basis of 𝑊𝑛,1 then it contains 𝑟 ≥ 2 vertices on 𝐶𝑛,1 𝑓𝑜𝑟 𝑛 ≥ 3 and 

we can order the certices of 𝐵 = {𝑣𝑖1
, 𝑣𝑖2

, … , 𝑣𝑖𝑟
 } so that 𝑖1 < 𝑖2 … , 𝑖𝑟. We shall say that the paris of vertices {𝑣𝑖𝑎

, 𝑣𝑖𝑎+1
} for 

1 ≤ 𝑎 ≤ 𝑟 − 1 and {𝑣𝑖𝑟
, 𝑣𝑖1

} are pairs of neighboring vertices. Given such an oedering, as in [3] we will define the gap ga for 

𝑎 ≤ 𝑎 ≤ 𝑟 − 1 as the set vertices {𝑣𝑗|𝑖𝑎 < 𝑗 < 𝑖𝑎+1 and gr= {𝑣𝑗|1 ≤ 𝑗 ≤ 𝑖1𝑜𝑟 𝑖𝑟 < 𝑗 ≤ 𝑛}. 

 Thus we have r gaps, some of which may be empty. We will say that gap ga and gb are neighboring gaps when |𝑎 − 𝑏| =
1 𝑜𝑟 𝑟 − 1. It was shown in that if B is a basis for Wn,1 then B consists only the vertices of Cn,1 that satisfy the following 

properties: 

a) Every gap B contains at most three vertices. 

b) At most one gap of B contains three vertices. 

c) If a gap of B contains at least two vertices, then both of its neighboring gaps contain at most one vertex. 

 

Definition: A double-wheel graph Wn,2 can be obtained as join of 2𝐶𝑛 + 𝐾1, and inductively we can construct an m-level 

wheel graph denoted by 𝑊𝑛,𝑚 ≅ 𝑚𝐶𝑛 + 𝐾1. 

Let 𝐶𝑛,1, … , 𝐶𝑛,𝑚 represent the cycle of 𝑊𝑛,𝑚. At levels 1,…,m, respectively, as shown in fig.1. We want to compute the metric 

dimension of 𝑊𝑛,2, … , 𝑊𝑛,𝑚. For this study the metric dimension of 𝑊𝑛,1. 

Suppose that 𝑊𝑛,2 = 2𝐶𝑛,1 + 𝐾1 𝑓𝑜 𝑛 ≥ 3, then the central vertex 𝑣 does not belong to any basis. Since 𝑑𝑖𝑎𝑚(𝑊𝑛,2) = 2, so if 

𝑣 belongs to any metric basis, say B, then there must exist two distinct vertices 𝑣𝑖𝑎𝑛𝑑 𝑣𝑗, for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 such that  

 

 
 

Fig 1: An m-level wheel W12,m 

 

𝑟(𝑣𝑖|𝐵 = 𝑟(𝑣𝑗|𝐵). Consequenly, the basis vertices belong to the rim vertices of 𝑊𝑛,2 only if B is a basis of 𝑊𝑛,2, then contains 

only vertices from the cycle induced by 𝐶𝑛,1 𝑎𝑛𝑑 𝐶𝑛,2. We have the following gap conditions for the selection of basis vertices: 

1. Every gap of B for the vertices of 𝐶𝑛,1 satisfy conditions (𝑎) − (𝑐) presented for 𝑊𝑛,1. 
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2. Every gap of B may have at most three vertices of 𝐶𝑛,1𝑜𝑟 𝐶𝑛,2. Otherwise, there may be a gap having three vertices, say, 

𝑊𝑖 , 𝑤𝑖+1, 𝑤𝑖+2(1 ≤ 𝑖 ≤ 𝑛)𝑜𝑓 𝐶𝑛,2 and addition performed modulo n such that 𝑟(𝑤𝑖+1|𝐵 = 𝑟(𝑣𝑖+1|𝐵), 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑖+2 

are the vertices of the gap of 𝐶𝑛,1. In other words, we can say that at most one gap of B have three vertices. 

3. If a gap of B has two vertices then its neighboring gap contains at most one vertex. Otherwise, there exist five consecutive 

vertices, say, 𝑤𝑖 , 𝑤𝑖+1, 𝑤𝑖+2, 𝑤𝑖+3, 𝑤𝑖+4 such that 𝑤𝑖+2 ∈ 𝐵 (1 ≤ 𝑖 ≤ 𝑛). However, then we have 𝑟(𝑤𝑖+1|𝐵) = 𝑟(𝑤𝑖+3|𝐵). 

 

Now suppose that B is any set of vertices of 𝐶𝑛,1𝑎𝑛𝑑 𝐶𝑛,2 that satisfies conditions (i)-(iii) and let 𝑦 ∈ 𝑉(𝑊𝑛,2)\𝐵. there are 

following possibilities to be discussed: 

1. If 𝑦 belongs to gap of B of vertices of 𝐶𝑛,1 the it must satisfy the following conditions: 

a) 𝑦 belongs to a gap of size one of B. suppose 𝑣𝑖𝑎𝑛𝑑 𝑣𝑗 be the neighboring vertices of B thaht determine this gap. Then 𝑦 is 

adjacent to 𝑣𝑖𝑎𝑛𝑑 𝑣𝑗 and has distance two from all other vertices of B. since 𝑛 ≥ 7, no other vertices of 𝑊𝑛1 has this 

property and so 𝑟(𝑦|𝐵) ≠ (𝑥|𝐵)𝑓𝑜𝑟 𝑥 ≠  𝑦. 

b) 𝑦 Belongs to a gap of size two of B. then we may assume that 𝑣𝑗 , 𝑣𝑗+1 = 𝑦, 𝑦𝑗+2, 𝑦𝑗+3 are vertices of 𝐶𝑛,1, where 

𝑣𝑗+1, 𝑣𝑗+3 ∈ 𝐵 and 𝑣𝑗+2 ∉ 𝐵. Then 𝑦 is adjacent to 𝑣𝑗 and has distance 2 from all other vertices of B. By property (C), only 

𝑦 has this property and so 𝑟(𝑦|𝐵) ≠ 𝑟(𝑥)|𝐵)𝑓𝑜𝑟 𝑥 ≠  𝑦 

c) 𝑦 Belongs to a gap of size three of B. Then there exists vertices 𝑣𝑗 , 𝑣𝑗+1, 𝑣𝑗+2, 𝑣𝑗+2, 𝑣𝑗+3, 𝑣𝑗+4 𝑜𝑓 𝐶𝑛,1, where only 

𝑣𝑗+1, 𝑣𝑗+4 ∈ 𝐵. Assume first that 𝑦 = 𝑣𝑗+1. Then 𝑦 adjacent to 𝑣𝑗 and has distance 2 from all other vertices of B. by 

property ©, 𝑦 is the only vertex of 𝑊𝑛,1 with this property and so 𝑟(𝑦|𝐵) ≠ 𝑟(𝑥|𝐵)𝑓𝑜𝑟 𝑥 ≠ 𝑦. 
Next, we assume that 𝑦 = 𝑣𝑗+2. Then𝑟(𝑦|𝐵) = 2,2, … ,2). By properties (a) and (b), no other vertex of 𝑊𝑛,1 has this 

representation. 

d) 𝑦 = 𝑣 be a central vertex. Then 𝑟(𝑦|𝐵) = 1,1, … ,1) 𝑎𝑛𝑑 𝑦 is the only vertex of 𝑊_(𝑛, 1) with representation. 

2. Similarly, one can show that if either y belongs to a gap of size one, two or three of B of vertices of cycle induced by 

𝐶𝑛,2𝑜𝑟 𝑖𝑓 𝑦 is a central vertex of 𝑊𝑛,2 then, we have 𝑟(𝑦|𝐵) ≠ 𝑟(𝑥|𝐵) for 𝑥 ≠ 𝑦; 𝑦 ∈ 𝑉(𝑊𝑛,2). 

 

Therefore, any set B having properties (i)-(iii) is a resolving set for 𝑾𝒏,𝟐 

In the next theorem, we give a precise formula for computing the metric dimension of double wheel 𝑊𝑛,2 for 𝑛 ≥ 7. this result 

provides a base for extending the result to the metric dimension of m-level wheels. 

Theorem 2.1 𝐼𝑓 𝑛 ≥ 7, then we have 𝛽(𝑊𝑛,2) = 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋. 

Proof. Let 𝑊𝑛,1 ≅ 𝐶𝑛,1 + 𝐾 and 𝑊𝑛,2 ≅ 2𝐶𝑛,1 + 𝐾1, where 𝑣 is the central vertex of 𝑊𝑛,2 and 𝐶𝑛,1: 𝑣1, … , 𝑣𝑛, 𝑣1 and 

𝐶𝑛,2: 𝑤1, … , 𝑤𝑛, 𝑤1 be the outer cycles of 𝑊𝑛,2 at levels 1 and 2, respectively. First we prove that 𝛽(𝑊𝑛,2) ≤ 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4 

5
⌋ 

by constructing a resolving set in 𝑊𝑛,2 with 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ vertices. We assume the following cases according to the 

residue class modulo 5 to which n belongs. 

 

Case 1: When 𝑛 ≡ 0 (𝑚𝑜𝑑 5), the we may write 𝑛 = 5𝑘, where 𝑘 ≥ 2, and 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ = 4𝑘. since 𝐵 ≡

{𝑣5𝑖+1, 𝑣5𝑖+4, 𝑤5𝑗+1, 𝑤5𝑗+4: 0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1, it is resolving set having 4k vertices as it satisfies conditions (i)-(iii). 

 

Case 2: When 𝑛 ≡ 1(𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 1 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 2, 𝑎𝑛𝑑 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ = 4𝑘 + 1. Since 𝐵 =

{𝑣5𝑖+1, 𝑣5𝑖+4: 0 ≤ 𝑖 ≤ 𝑘 − 2}⋃{𝑣5𝑘−4, 𝑣5𝑘}⋃{𝑤5𝑗+1, 𝑤5𝑗+4: 0 ≤ 𝑗 ≤ 𝑘 − 1}⋃{𝑤5𝑘+1}, it is a resolving set having 4𝑘 + 1 

vertices as it satisfies conditions (i)-(iii). 

 

Case 3: When 𝑛 ≡ 2(𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 2 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 1, 𝑎𝑛𝑑 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ = 4𝑘 + 2. Since 𝐵 =

{𝑣5𝑖+1, 𝑣5𝑖+4, 𝑤5𝑗+1, 𝑤5𝑗+4: 0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1}⋃{𝑣5𝑘+1, 𝑣5𝑘+1},t is a resolving set having 4𝑘 + 2 vertices as it satisfies 

conditions (i)-(iii). 

 

Case 4: When 𝑛 ≡ 4 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 4 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 1, 𝑎𝑛𝑑 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ = 4𝑘 + 4. Since 𝐵 =

{𝑣5𝑖+1, 𝑣5𝑖+4, 𝑤5𝑗+1, 𝑤5𝑗+4: 0 ≤ 𝑖, 𝑗 ≤ 𝑘}. It is a resolving set having 4𝑘 + 4 vertices as it satisfies conditions (i)-(iii). 

 

Case 5: When 𝑛 ≡ 3 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 3 𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 1, 𝑎𝑛𝑑 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ = 4𝑘 + 3. Since 𝐵 =

{𝑣5𝑖+1, 𝑣5𝑖+4, : 0 ≤ 𝑖 ≤ 𝑘 − 2}⋃{𝑣5𝑘−4, 𝑣5𝑘,𝑣5𝑘+2}⋃{𝑤5𝑗+4, 𝑤5𝑗+6: 0 ≤ 𝑗 ≤ 𝑘 − 1}⋃{𝑤1, 𝑤5𝑘+3},t is a resolving set having 

4𝑘 + 3 vertices as it satisfies conditions (i)-(iii). 

Hence, it follows from above discussion that 𝛽(𝑊𝑛,2) ≤ 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋. 

Next, we show that 𝛽(𝑊𝑛,2) ≥ 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋. Let B a basis for 𝑊𝑛,2. We consider the following cases: 

Case (a). subcase(a1): |𝐵1| = 2𝑙 for some integer 𝑙 ≥ 1, where B1 is the basis for 𝑊𝑛,1 as obtained in [3], i.e. |𝐵1| ≥ 𝛽(𝑊𝑛,1) =

⌊
2𝑛+2

5
⌋. 

http://www.allresearchjournal.com/


 

~ 35 ~ 

International Journal of Applied Research  http://www.allresearchjournal.com  
 

Subcase (a2): |B2|=2𝑡 for some integer 𝑡 ≥ 1, where 𝐵2 represents the resolving vertices lying on 𝐶𝑛,2 in presence of vertices 

B1. The conditions (i)-(iii) imply that at most t gaps of B2 contain two vertices. So the number of vertices that belong to 

different gaps of B2 are at most 3𝑡. Therefore we get, 𝑛 − 2𝑡 ≤ 3𝑡 which implies that |𝐵2| = 2𝑡 ≥ ⌈
2𝑛

5
⌉ ≥ ⌊

2𝑛+4

5
⌋. 

Subcase(a3): |𝐵2| = 2𝑡 + 1 for some integer 𝑡 ≥ 1, where B2 represents the resolving vertices lying on 𝐶𝑛,2 in presence of 

vertices B1. Condition (i)-(iii) implies that at most t gaps of 𝐵2 contains two vertices. So the number of vertices that belong to 

different gaps of 𝐵2 are at most 3𝑡 + 1. Therefore we get, 𝑛 − 2𝑡 − 𝑎 ≤ 3𝑡 + 1 which implies that |𝐵2| = 2𝑡 + 1 ≥ ⌈
2𝑛+1

5
⌉ ≥

⌈
2𝑛+1

5
⌉. Hence by combining subcase(a1) with subcase (a2) or subcase (a3), we obtain that |𝐵| = |𝐵1| + |𝐵2| ≥ 2𝑙 + 2𝑡 ≥

𝛽(𝑊𝑛,1) + ⌈
2𝑛+4

5
⌉. 

Case (b). subcase(b1): |𝐵1| = 2𝑙 + 1 for some integer 𝑙 ≥ 1, where 𝐵1 is the basis for 𝑊𝑛,1 as obtained in [3], i.e. |𝐵1| ≥
𝛽(𝑊𝑛,1). 

Subcase(b2): |𝐵2| = 2𝑡 + 1 for some integer 𝑡 ≥ 1, where 𝐵2 represents the resolving vertices lying on 𝐶𝑛,2 in presence of 

vertices 𝐵1. Condition (i)-(iii) implies that at most t gaps of B2 contain two vertices. So the number of vertices that belong to 

different gaps of B2 are at most 3𝑡 + 1. therefore we get, 𝑛 − 2𝑡 − 1 ≤ 3𝑡 + 1 which implies that |𝐵2| = 2𝑡 + 1 ≥  ⌈
2𝑛+1

5
⌉ ≥

⌊
2𝑛+4

5
⌋. 

Subcase (b3): This case is similar to the cubase (𝑎2). Hence by combining subcase (b1) with subcase (b2) or subcase (b3), we 

obtain that |𝐵| = |𝐵1| + |𝐵2| ≥ 2𝑙 + 1 + 2𝑡 + 1 ≥ 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋, which completes the proof. 

We now extend out results to m-level wheel denoted by 𝑊𝑛,𝑚 In the next theorem, we apply mathematical induction on the 

levels of wheel to prove result. 

Theorem 2.2 we have 𝛽(𝑊𝑛,𝑚)𝛽(𝑊𝑛,1) + (𝑚 − 1) ⌊
2𝑛+4

5
⌋ for every integer 𝑛 ≥ 7 and 𝑚 ≥ 3. 

Proof. We will prove this result by induction on levels of wheel denoted by ‘m’. When m=1, then 𝛽(𝑊𝑛,1) = ⌊
2𝑛+2

5
⌋ is 

obtained in [3]. When m=2, then 𝛽(𝑊𝑛,2) = 𝛽(𝑊𝑛,1) + ⌊
2𝑛+4

5
⌋ by theorem 2.1. Now we assume that the assertion is true for 

𝑚 = 𝑘 i.e., 

𝛽(𝑊𝑛,𝑘) = 𝛽(𝑊𝑛,1) + (𝑘 − 1) ⌊
2𝑛+4

5
⌋. (1) 

We will shoe that it is true for 𝑚 = 𝑘 + 1. Suppose 𝛽(𝑊𝑛,𝑘+1) = 𝛽(𝑊𝑛,𝑘) + ⌊
2𝑛+4

5
⌋, then by using Eq. (1), we have 

𝛽(𝑊𝑛,𝑘+1) = {𝛽(𝑊𝑛,1) + (𝑘 − 1) ⌊
2𝑛+4

5
⌋} + ⌊

2𝑛+4

5
⌋ = 𝛽(𝑊𝑛,1) + (𝑘) ⌊

2𝑛+4

5
⌋. Hence the result is true for all positive integers 

𝑚 ≥ 3. 
 

1. Metric dimension of an infinity class of convex polytopes 

Let 𝐼 = (1, … , 𝑛} be an index set and 𝑄𝑛 be the graph of an antiprism. The antiprism 𝑄𝑛, 𝑛 ≥ 3 [16] is the plane regular graph. 

Let us denote the vertex set of 𝑄𝑛 by 𝑉(𝑄𝑛) = {𝑦1, 𝑦2, … , 𝑦𝑛, 𝑧1, 𝑧2, … , 𝑧𝑛} and the edge set by 𝐸(𝑄𝑛) = {𝑦𝑖𝑦𝑖+1: 𝑖 ∈
𝐼}⋃{𝑧𝑖𝑧𝑖+1: 𝑖 ∈ 𝐼}⋃{𝑦𝑖𝑧𝑖 + 1: 𝑖 ∈ 𝐼}. We make the convention that 𝑦𝑛+1 = 𝑦1 and 𝑧𝑛+1 = 𝑧1 to simplify later notations. The 

face set 𝐹(𝑄𝑛) contains 2𝑛 3-sided face and two n-sided face(internal and external). We insert exactly one vertex 𝑥(𝑡) into the 

internal (external) n-sided face of 𝑄𝑛 and consider the graph ℚ𝑛 with the vertex set 𝑉(ℚ𝑛) = 𝑉(𝑄𝑛)⋃{𝑥, 𝑡} and the edge set 

𝐸(ℚ𝑛) = 𝐸(𝑄𝑛)⋃{𝑥𝑦𝑖+1: 𝑖 ∈ 𝐼}⋃{𝑧𝑖𝑡: 𝑖 ∈ 𝐼} the ℚ𝑛 is the plane graph consisting of 3-sided faces and constitutes an infinite 

class of convex polytopes. 

The metric dimension of several classes of graphs was studied in [8, 9, 12, 13, 15-17] and was proved that the classes of convex 

polytopes have constant metric dimensions. The following open problem was proposed in [8]. 

Open Problem is it the case that graph of every convex polytope has constant metric dimension? In this section, we study the 

metric dimension of this class of convex polytopes denoted by ℚ𝑛 and we prove that this class of graph has unbounded metric 

dimension, thus giving a negative answer to the open problem proposed in [9]. Let 𝑦1, 𝑦2, … , 𝑦𝑛𝑎𝑛𝑑 𝑧1, 𝑧2, … , 𝑧𝑛 represented the 

vertices of inner cycle 𝐶𝑛,1 an outer cycle 𝐶𝑛,2𝑜𝑓 ℚ𝑛 respectvely as shown in fig.2. Suppose that ℚ𝑛 for 𝑛 ≥ 3 be an infinite 

class of convex polytopes, then the central vertices 𝑥 𝑎𝑛𝑑 𝑡 do not belongs to any basis. Since 𝑑𝑖𝑎𝑚(ℚ𝑛) = 3, so if one of 

𝑐 𝑎𝑛𝑑 𝑡 belongs to any metric basis, say B, then there must exist two distince vertices 𝑣𝑖𝑎𝑛𝑑 𝑣𝑗 , for 11 ≤ 𝑖 ≠ 𝑗 ≠ 𝑛 such that 

𝑟(𝑣𝑖|𝐵) = 𝑟(𝑣𝑗|𝐵). Consequently, the basis vertices belong to the rim vertices of ℚ𝑛 only. 

If B is a basis of ℚ𝑛, then B contains only vertices of inner cycle of ℚ𝑛. We have the following gap conditions for the selection 

of the basis vertices: 

i) Every gap of B may have at most two vertices of 𝐶𝑛,1. Otherwise there exist a gap of B having three vertices 

𝑦𝑝, 𝑦𝑝+1, 𝑦𝑝+2, 𝑦𝑝+3 𝑎𝑛𝑑 𝑦𝑝+4 𝑤𝑖𝑡ℎ 𝑦𝑝, 𝑦𝑝+4 ∈ 𝐵 such that 𝑟(𝑦𝑝+2|𝐵) = 𝑟(𝑡|𝐵) = (2,2, … ,2). 

ii) If a gap of B contains two vertices of 𝐶𝑛,1, then its neighboring gaps may contain at most one vertex. Otherwise, there exist 

five consecutive vertices 𝑦𝑝, 𝑦𝑝+1, 𝑦𝑝+2, 𝑦𝑝+3 𝑎𝑛𝑑 𝑦𝑝+4 𝑤𝑖𝑡ℎ 𝑦𝑝+2 ∈ 𝐵 such that 𝑟(𝑦𝑝+1|𝐵) = 𝑟(𝑦𝑝+3|𝐵). 
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Fig 2: An infinite class of convex polytopes ℚ𝑛 

 

Now we assume that B is any set of vertices of 𝐶𝑛,1 that satisfies condition (i) and (ii) and let 𝑦 ∈ 𝑉(ℚ𝑛). There are following 

possibilities to be discussed:  

• If 𝑦 belongs to a gap of size two of B with vertices 𝑦𝑝, 𝑦𝑝+1 = 𝑦, 𝑦𝑝+2, 𝑦𝑝+3 such that 𝑦𝑝, 𝑦𝑝+3 ∈ 𝐵, then 𝑟(𝑦|𝐵) =

(1,2, … ,2). 
• If 𝑦 belongs to a gap of size two of B with vertices 𝑦𝑝, 𝑦𝑝+1 = 𝑦, 𝑦𝑝+2 such that 𝑦𝑝, 𝑦𝑝+2 ∈ 𝐵, then 𝑟(𝑦|𝐵) = (1,1,2, … ,2). 

• If 𝑦 = 𝑡 then 𝑟(𝑦|𝐵) = (2,2, … ,2). 
• If 𝑦 = 𝑥 then 𝑟(𝑦|𝐵) = (1,1, … ,1). 
• If 𝑦 = 𝑧𝑝 ∈ 𝑉(𝐶𝑛,2) and 𝑦 is adjacent to 𝑦𝑝 and 𝑦𝑝+𝑛−1 with 𝑦𝑝, 𝑦𝑝+3, 𝑦𝑝+𝑛−1 ∈ 𝐵, then 𝑟(𝑦|𝐵) = (1,3, … ,3,1). 

• If 𝑦 = 𝑧𝑝 ∈ 𝑉(𝐶𝑛,2) and 𝑦 is adjacent to 𝑦𝑝 and 𝑦𝑝+𝑛−1 with 𝑦𝑝, 𝑦𝑝+3, 𝑦𝑝+𝑛−2 ∈ 𝐵, then 𝑟(𝑦|𝐵) = (1,3, … ,3,2). 

• If 𝑦 = 𝑧𝑝 ∈ 𝑉(𝐶𝑛,2) and 𝑦 is adjacent to 𝑦𝑝 and 𝑦𝑝+𝑛−1 with 𝑦𝑝+1, 𝑦𝑝+𝑛−2 ∈ 𝐵, then 𝑟(𝑦|𝐵) = (2,3, … ,3,2). 

• If 𝑦 = 𝑧𝑝 ∈ 𝑉(𝐶𝑛,2) and 𝑦 is adjacent to 𝑦𝑝 and 𝑦𝑝+𝑛−1 with 𝑦𝑝+1, 𝑦𝑝+𝑛−3, 𝑦𝑝+𝑛−1 ∈ 𝐵, then 𝑟(𝑦|𝐵) = (2,3, … ,3,1). 

 

Therefore, any set B having properties (i) and (ii) is a resolving ser of ℚ𝑛. We now present an exact formula for computing the 

metric dimension of ℚ𝑛 for every integer 𝑛 ≥ 6. 

Theorem 3.1. 𝐼𝑓 𝑛 ≥ 6, then we have 𝛽(ℚ𝑛) = ⌊
2𝑛+4

5
⌋. 

Proof. We prove this result by double inequality. First we prove that 𝛽(ℚ𝑛) ≤ ⌊
(2𝑛+4)

5
 ⌋ by constructing a resolving set in ℚ𝑛 

with ⌊
2𝑛+4

5
 ⌋ vertices. We consider the following cases according to the residue class modulo 5 to which 𝑛 belongs. 

Case 1: When 𝑛 ≡ 0 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘, where 𝑘 ≥ 2, and ⌊
2𝑛+4

5
⌋ = 2𝑘. Since 𝐵 = {𝑦5𝑖+1, 𝑦5𝑖+4: 0 ≤ 𝑖 ≤

𝑘 − 1}, it is resolving set having 2𝑘 vertices as it satisfies conditions (i) and (ii). 

 

Case 2: When 𝑛 ≡ 1 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 1, where 𝑘 ≥ 1, and ⌊
2𝑛+4

5
⌋ = 2𝑘 + 1. Since 𝐵 =

{𝑦5𝑖+1, 𝑦5𝑖+4: 0 ≤ 𝑖 ≤ 𝑘 − 1}⋃{𝑦5𝑘+1}, it is resolving set having 2𝑘 + 1 vertices as it satisfies conditions (i) and (ii). 

 

Case 3: When 𝑛 ≡ 2 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 2, where 𝑘 ≥ 1, and ⌊
2𝑛+4

5
⌋ = 2𝑘 + 1. Since 𝐵 =

{𝑦5𝑖+1, 𝑦5𝑖+4: 0 ≤ 𝑖 ≤ 𝑘 − 1}⋃(𝑤5𝑘+1, it is resolving set having 2𝑘 + 1 vertices as it satisfies conditions (i) and (ii). 

 

Case 4: When 𝑛 ≡ 3 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 3, where 𝑘 ≥ 1, and ⌊
2𝑛+4

5
⌋ = 2𝑘 + 2. Since 𝐵 =

{𝑦5𝑖+4, 𝑦5𝑖+6: 0 ≤ 𝑖 ≤ 𝑘 − 1}⋃(𝑦1, 𝑦5𝑘+3, it is resolving set having 2𝑘 + 2 vertices as it satisfies conditions (i) and (ii). 

 

Case 5: When 𝑛 ≡ 4 (𝑚𝑜𝑑 5), then we may write 𝑛 = 5𝑘 + 4, where 𝑘 ≥ 1, and ⌊
2𝑛+4

5
⌋ = 2𝑘 + 2. Since 𝐵 =

{𝑦5𝑖+1, 𝑦5𝑖+4: 0 ≤ 𝑖 ≤ 𝑘}, it is resolving set having 2𝑘 + 2 vertices as it satisfies conditions (i) and (ii). Hence, from above it 

follows that 𝛽(ℚ𝑛) ≤ ⌊
2𝑛+4

5
⌋. 

Next we show that 𝛽(ℚ𝑛) ≥ ⌊
2𝑛+4

5
⌋. Let B be a basis of ℚ𝑛. We consider the following cases: 
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Case (a): |𝐵| = 2𝑡 for some integer 𝑡 ≥ 1. the conditions (i) and (ii) imply that at most 𝑡 gaps of B contains two vertices. So 

the number of vertices that belong to different gaps of B are at most 3𝑡. Therefore 𝑛 = 2𝑡 ≤ 3𝑡, which implies that |𝐵| = 2𝑡 ≥

⌈
2𝑛

5
⌉ ≥ ⌊

2𝑛+4

5
⌋. 

 

Case (b): |𝐵| = 2𝑡 + 1 for some integer 𝑡 ≥ 1. the conditions (i) and (ii) imply that at most 𝑡 gaps of B contains two vertices. 

So the number of vertices that belong to different gaps of B are at most 3𝑡 + 1. Therefore 𝑛 − 2𝑡 − 1 ≤ 3𝑡 + 1, which implies 

that |𝐵| = 2𝑡 + 1 ≥ ⌈
2𝑛+1

5
⌉ ≥ ⌊

2𝑛+4

5
⌋. Which complete the proof. 

 

2. Metric dimension of antiweb-gear graphs 

The gear graph denoted by 𝑗2𝑛 is defined as follows: Consider an even cycle 𝐶2𝑛: 𝑣1, 𝑣2, … , 𝑣2𝑛, 𝑣1 where 𝑛 ≥ 2 and a new 

vertex 𝑣 is adjacent to 𝑛 vertices of 𝐶2𝑛: 𝑣2, 𝑣4, … , 𝑣2𝑛. 
The gear graph 𝐽2𝑛 can be obtained from the wheel 𝑊2𝑛 by alternately deleting 𝑛 spokes. Tomescu and Javaid [33] proved that 

\𝑏𝑎𝑡𝑎 (𝐽2𝑛) = ⌊
2𝑛

3
⌋  𝑓𝑜𝑟 𝑛 ≥ 4. 

An antiweb-wheel denoted by 𝐴𝑊𝑊𝑛 can be defined as 𝐴𝑊𝑊𝑛 ≅ 𝐶𝑛
2 + 𝐾1. We have 𝑉(𝐴𝑊𝑊𝑛) = 𝑉(𝑊𝑛) and 𝐸(𝐴𝑊𝑊𝑛) =

𝐸(𝑊𝑛)⋃{𝑣𝑖𝑣𝑖+2: 0 ≤ 𝑖 ≤ 𝑛}, where the indices are taken modulo 𝑛. In [23], it was proved that 

𝛽(𝐴𝑊𝑊𝑛) = {
⌈

𝑛+1

3
⌉ : 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑;

𝑛

3
: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

 

The antiweb-gear graph can be obtained from gear graph 𝐽2𝑛 by replacing 𝐶2𝑛 by 𝐶2𝑛
2  and is denoted by 𝐴𝑊𝐽2𝑛. We have 

𝑉(𝐴𝑊𝐽2𝑛) = 𝑉(𝐽2𝑛) and 𝐸(𝐴𝑊𝐽2𝑛) = 𝐸(𝐽2𝑛)⋃{𝑣𝑖𝑣𝑖+2: 0 ≤ 𝑖 ≤ 𝑛, where the indices are taken modulo 𝑛. In this section, we 

study the metric dimension of antiweb-gear graphs and we prove that this class has unbounded metric dimension.  

Suppose that 𝐴𝑊𝐽2𝑛 for 𝑛 ≥ 3, then the central vertex 𝑣 does not belong to any basis. Since 𝑑𝑖𝑎𝑚(𝐴𝑊𝐽2𝑛) = 4, if 𝑣 belongs to 

any metric basis, say B, then there must exist two distinct vertices 𝑣𝑖𝑎𝑛𝑑 𝑣𝑗 for 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 such that 𝑟(𝑣𝑖|𝐵) = 𝑟(𝑣𝑗|𝐵). 

Consequently, the basis vertices belong to the rim vertices of 𝐴𝑊𝐽2𝑛 only (An antiweb-gear graph is shown in fig. (3). 

A gap determined by neighboring vertices 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 be called an 𝛼 − 𝛽with 𝛼 ≤ 𝛽 when deg(𝑣𝑖) = 𝛼 and deg(𝑣𝑗) = 𝛽 or 

When deg(𝑣𝑖) = 𝛽𝑎𝑛𝑑 deg(𝑣𝑗) = 𝛼. Hence we have three kinds of gaps in 𝐴𝑊𝐽2𝑛, i.e. 4-4, 5-4 and 5-5 gaps.  

Lemma 4.1 Let B be a basis of 𝐴𝑊𝐽2𝑛𝑛 ≥ 6, then every 4-4, 5-4 and 5-5 gap of B contains at most 9,8 and 7 vertices 

respectively. 

Proof. On contrary, suppose that there is a 4-4 gap of B having 11 vertices 𝑣1, … , 𝑣11 𝑜𝑓 𝐶2𝑛 such that deg(𝑣1) = deg(𝑣11) =
5. For this case, (𝑣5|𝐵) = 𝑟(𝑣7|𝐵), contradiction. Similarly, if there us a 5-4 having 10 vertices if 𝐶2𝑛 say, 𝑣1, … , 𝑣10such that 

deg(𝑣1) = 5 and deg𝑣(𝑣10) = 4. In this case, we get 𝑟(𝑣5|𝐵) = 𝑟(𝑣_7|𝐵), a contradiction. If there is a 5-5 gap having 9 

vertices say, 𝑣1, … , 𝑣9 such that deg(𝑣1) = deg(𝑣9) = 4, then 𝑟(𝑣5|𝐵) = 𝑟(𝑣7|𝐵), contradiction. 

From now on, the 4-4, 5-4 and 5-5 gaps having 9, 8 and 7 vertices, respectively will be referred as major gaps, while the rest of 

all will referred as minor gaps. The vertices having degree 5 and 4 are known as major (labeled by star) and minor vertices, 

respectively. 

 

 

 
 

Fig 3: An antiweb-gear graph 𝐴𝑊𝐽12 
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Lemma 4.2 any basis B of AWJ2n 𝑛 ≥ 6) contains at most one major 4-4 or 5-4 gap. 

Proof in contrary, suppose that B contains two distince major gaps of kind 4-4 or 5-4, then we have the following cases: 

• 4-4 and 4-4 gaps: 𝑣1

∗
, 𝑣2, 𝑣3

∗
, 𝑣4, 𝑣5

∗
, 𝑣6, 𝑣7

∗
, 𝑣8, 𝑣9

∗
 and 𝑢1

∗
, 𝑢2, 𝑢3

∗
, 𝑢4, 𝑢5

∗
, 𝑢6, 𝑢7

∗
, 𝑢8, 𝑢9

∗
; in this case we have 𝑟 (𝑣5

∗
|𝐵) =

𝑟(𝑣7

∗
|𝐵). 

• 4-4 and 5-4 gaps: 𝑣1

∗
, 𝑣2, 𝑣3

∗
, 𝑣4, 𝑣5

∗
, 𝑣6, 𝑣7

∗
, 𝑣8, 𝑣9

∗
 and 𝑢1, 𝑢2

∗
, 𝑢3, 𝑢4

∗
, 𝑢5, 𝑢6

∗
, 𝑢7, 𝑢8

∗
 ; in this case we have 𝑟 (𝑣5

∗
|𝐵) = 𝑟(𝑣4

∗
|𝐵). 

• 5-4 and 5-4 gaps: 𝑢1, 𝑢2

∗
, 𝑢3, 𝑢4

∗
, 𝑢5, 𝑢6

∗
, 𝑢7, 𝑢8

∗
 and 𝑣1, 𝑣2

∗
, 𝑣3, 𝑣4

∗
, 𝑣5, 𝑣6

∗
, 𝑣7, 𝑣8

∗
; in this case we have 𝑟 (𝑣4

∗
|𝐵) = 𝑟 (𝑢4

∗
|𝐵). 

 

In the next lemma, we will prove that any two neighboring gaps, one of which being major may contain together at most 12 

vertices. 

Lemma 4.3. For any basis B of 𝐴𝑊𝐽2𝑛 (𝑛 ≥ 6), any two neighboring gaps, one of which being major of kind4-4, 5-4 or 5-5 

contain together at most 12 vertices. 

Proof. If the major gap is a 4-4 (with 9) vertices, then by Lemma 4.2 its neighboring gap can neither be a 4-4 gap having 5 

vertices nor be a 5-4 gap having 4 vertices. If it is true, consider a path: 𝑣1

∗
, 𝑣2, 𝑣3

∗
, 𝑣4, 𝑣5

∗
, 𝑣6, 𝑣7

∗
, 𝑣8, 𝑣9

∗
, 𝑣10, 𝑣11

∗
, 𝑣12, 𝑣13

∗
, 𝑣14, 𝑣15

∗
 

on 𝐶2𝑛 where 𝑣10 ∈ 𝐵 such that 𝑟(𝑣9|𝐵) = 𝑟(𝑣11|𝐵), contradiction. If the major gap is a 5-4 gap (with 8) vertices then by 

lemma 4.2, its neighboring gap can’t be a 4-4 gap having 5 vertices. If it is true, consider a path  

𝑣1, 𝑣2

∗
, 𝑣3, 𝑣4

∗
, 𝑣5, 𝑣6

∗
, 𝑣7, 𝑣8

∗
, 𝑣9, 𝑣10

∗
, 𝑣11, 𝑣12

∗
, 𝑣13, 𝑣14

∗
 on 𝐶2𝑛where 𝑣9 ∈ 𝐵 such that 𝑟(𝑣8|𝐵) = 𝑟(𝑣10|𝐵), contradiction. If the 

major gap is a 5-5 gap having 7 vertices then its neighboring gap can’t be a minor 5-5 gap having 5 vertices. If it is true; 

consider a path: 𝑣1, 𝑣2

∗
, 𝑣3, 𝑣4

∗
, 𝑣5, 𝑣6

∗
, 𝑣7, 𝑣8

∗
, 𝑣9, 𝑣10

∗
, 𝑣11, 𝑣12

∗
, 𝑣13 on 𝐶2𝑛 where 𝑣8 ∈ 𝐵 such that 𝑟 (𝑣6

∗
|𝐵) = 𝑟(𝑣10

∗
|𝐵), 

contradiction. 

In the next lemma, we will prove that any two minor neighboring gaps may contain together at most e=ten vertices. 

Lemma 4.4. If B is any basis of 𝐴𝑄𝐽2𝑛 (𝑛 ≥ 6), then any two minor neighboring gaps contain together at most 10 vertices. 

Proof. By lemma 4.1, any minor 4-4, 5-4 and 5-5 gap contains 7,6 and 5 vertices, respectively, it suffices to prove the 

following cases: 

• Any minor 4-4 gap having 5 or 7 vertices has a neighboring 4-4 or 5-4 gaps with at most 3 and 2 vertices, respectively. 

Otherwise, there is a neighboring 4-4 or 5-4 gap having 5 and 4 vertices, respectively. In this case, consider a path: 

𝑣1

∗
, 𝑣2, 𝑣3

∗
, 𝑣4, 𝑣5

∗
, 𝑣6, 𝑣7

∗
, 𝑣8, 𝑣9

∗
, 𝑣10, 𝑣11

∗
, 𝑣12, 𝑣13

∗
 on 𝐶2𝑛, where 𝑣8 ∈ 𝐵 such that 𝑟 (𝑣7

∗
|𝐵) = 𝑟(𝑣9

∗
|𝐵), a contradiction. 

• Any minor 5-4 gap having 6 or 4 vertices has a neighboring 4-4 or 5-4 gaps with at most 3 and 4 vertices, respectively. 

Otherwise, there is a neighboring 4-4 or 5-4 gap having 5 and 6 vertices, respectively. In this case, consider a 

path: 𝑣1, 𝑣2

∗
, 𝑣3, 𝑣4

∗
, 𝑣5, 𝑣6

∗
, 𝑣7, 𝑣8

∗
, 𝑣9, 𝑣10

∗
, 𝑣11, 𝑣12

∗
 on 𝐶2𝑛, where 𝑣7 ∈ 𝐵 such that 𝑟 (𝑣6

∗
|𝐵) = 𝑟(𝑣8

∗
|𝐵). Or 

𝑣1

∗
, 𝑣2, 𝑣3

∗
, 𝑣4, 𝑣5

∗
, 𝑣6, 𝑣7

∗
, 𝑣8, 𝑣9

∗
, 𝑣10, 𝑣11

∗
, 𝑣12, 𝑣13

∗
 on 𝐶2𝑛, where 𝑣7 ∈ 𝐵 such that 𝑟(𝑣6|𝐵) = 𝑟(𝑣8|𝐵), a contradiction. 

• Any 5-5 gap having 5 vertices has a neighboring 5-5 or 5-4 gap with most 3 and 4 vertices, respectively. Otherwise, the 

neighboring gaps may contain 5 and 6 vertices, respectively. In this case, consider a path: 

𝑣1, 𝑣2

∗
, 𝑣3, 𝑣4

∗
, 𝑣5, 𝑣6

∗
, 𝑣7, 𝑣8

∗
, 𝑣9, 𝑣10

∗
, 𝑣11, 𝑣12

∗
, 𝑣13 on 𝐶2𝑛, where 𝑣7

∗
∈ 𝐵 such that 𝑟(𝑣5|𝐵) = 𝑟(𝑣7|𝐵), contradiction. 

 

In the next theorem, we compute the exact value of metric dimension for antiweb-gear graph. 

Theorem 4.1. For every 𝑛 ≥ 15, we have 𝛽(𝐴𝑊𝐽2𝑛) = ⌊
𝑛+1

3
⌋. 

Proof. Consider the antiweb-gear graphs 𝐴𝑊𝐽2𝑛, then we have 𝛽(𝐴𝑊𝐽2𝑛) = 3, for all 2 ≤ 𝑛 ≤ 8 and 𝑊1 = {𝑣1, 𝑣2, 𝑣3} and 

𝑊2 = {𝑣1, 𝑣4, 𝑣9} being metric basis for all 2 ≤ 𝑛 ≤ 6 and 𝑛 = 7,8 respectively. 𝛽(𝐴𝑊𝐽2𝑛) = 4, for all 9 ≤ 𝑛 ≤ 12 and 𝑊3 =
{𝑣1, 𝑣4, 𝑣8, 𝑣15}, 𝑊4 = {𝑣1, 𝑣2, 𝑣10, 𝑣12}, 𝑊5 = {𝑣1, 𝑣2, 𝑣10, 𝑣12} and 𝑊6 = {𝑣1, 𝑣4, 𝑣12, 𝑣16} being metric basis for 𝑛 =
9, 10, 11, 12, respectively. 𝛽(𝐴𝑊𝐽2𝑛) = 5 and 𝑊7 = {𝑣1, 𝑣5, 𝑣12, 𝑣15, 𝑣20} and 𝑊8 = {𝑣1, 𝑣4, 𝑣12, 𝑣16, 𝑣20} being metric basis 

for 𝑛 = 13, 14, respectively. However for 𝑛 ≥ 15, the dimension of 𝐴𝑊𝐽2𝑛 increases with number of vertices 𝑛. We also 

know that central vertex can’t belong to any basis of 𝐴𝑊𝐽2𝑛. For 𝑛 ≥ 15, we prove the result by double inequality. First we 

show that 𝛽(𝐴𝑊𝐽2𝑛) ≤ ⌈
𝑛+1

3
⌉ by constructing a resolving set 𝑀 𝑖𝑛 𝐴𝑊𝐽2𝑛 having ⌈

𝑛+1

3
⌉ vertices. For this we consider the 

following cases: 

 

Case 1: When 𝑛 ≡ 0 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘, where 𝑘 ≥ 6 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. In this case, 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−4

2
}⋃{𝑣2𝑛−2}. 

 

Case 2: When 𝑛 ≡ 1 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘 + 1, where 𝑘 ≥ 6 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. In this case, 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−4

2
}⋃{𝑣2𝑛−2}. 

 

Case 3: When 𝑛 ≡ 2 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘 + 4, where 𝑘 ≥ 6 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. In this case, 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−4

2
}⋃{𝑣2𝑛−2}. 
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Case 4: When 𝑛 ≡ 3 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘, where 𝑘 ≥ 5 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. In this case, 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−5

2
}⋃{𝑣2𝑛−4, 𝑣2𝑛}. 

 

Case 5: When 𝑛 ≡ 4 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘 + 2, where 𝑘 ≥ 5 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. In this case, 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−3

2
}. 

 

Case 6: When 𝑛 ≡ 5 (𝑚𝑜𝑑 6), then we may write 2𝑛 = 6𝑘 + 4, where 𝑘 ≥ 5 and ⌈
𝑛+1

3
⌉ = 𝑘 + 1. We define 𝑀 =

{𝑣1, 𝑣10}⋃{𝑣12𝑖+14, 𝑣12𝑖+18: 0 ≤ 𝑖 ≤
𝑘−3

2
}. 

 

The set M contains only one major vertex, rest of the vertices are all minor vertices. So there is a unique 5-4 major and 5-4 

minor gap, and rest of all are minor 4-4 gaps containing seven and three, one and three or three and three vertices alternative. 

M is a resolving set of 𝐴𝑊𝐽2𝑛, since any two minor or any two major vertices, respectively, lying in different gaps 

(neighboring or not) are sepatated by at least one vertex in the set of three or four vertices of M determining these two gaps. 

This property is true for the vertices lying in the same gap. Also we note that 𝑟(𝑣|𝑆) = (1,2,3, … ,2) and 𝑟(𝑣|𝑆) ≠ 𝑟(𝑥|𝑆), for 

every 𝑥 ∈ 𝑉(𝐴𝑊𝐽2𝑛) where 𝑣 is a central vertex and 𝑥 ≠ 𝑣. 

To prove that 𝛽(𝐴𝑊𝐽2𝑛) ≥ ⌈
2𝑛+1

6
⌉, Let B be a basis of 𝐴𝑊𝐽2𝑛 𝑎𝑛𝑑 |𝐵| = 𝑙. Then B induces 𝑙 gaps on 𝐶2𝑛, namely 𝑔1, … , 𝑔𝑙 

such that 𝑔𝑗  𝑎𝑛𝑑 𝑔𝑗+1 are neighboring gaps for every 1 ≤ 𝑗 ≤ 𝑙 − 1, and also 𝑔1𝑎𝑛𝑑 𝑔_𝑙 are neighboring gaps. By Lemma 

4.2, at most one of the gaps is major, say 𝑔1, My Lemma 4.3, and Lemma 4.4, we can write 
|𝑔1| + |𝑔2| ≤ 11;  
|𝑔2| + |𝑔3| ≤ 6;  
|𝑔𝑙−1| + |𝑔𝑙| ≤ 9;  
|𝑔𝑙| + |𝑔1| ≤ 12  

 

And  

|𝑔𝑗| + |𝑔𝑗+1| ≤ 10,  

 

For every 𝑗 = 3, … , 𝑙 − 2. By adding these inequalities, we get 

2(2𝑛 − 𝑙) = 2 ∑ |𝑔𝑗| ≤ 10𝑙 − 2.𝑙
𝑗=1   

 

It follows that 𝑙 ≥  ⌈
2𝑛+1

6
⌉. Since 𝑙 is an integer, for each 2𝑛 ≡ 0,2,4(𝑚𝑜𝑑 6), 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑙 ≥ ⌈

2𝑛+1

6
⌉, which completes the result. 

 

Conclusion 

In this paper, we have determined the metric dimension (location number) of m-level wheel graphs, convex polytope graphs 

and antiweb gear graphs. We proved that these classes of wheel related graphs have unbounded metric dimension. We also 

gave a negative answer to an open problem proposed in by providing that the infinite class of convex polytopes ℚ𝑛 has 

unbounded metric dimension. We believe that nay infinite class of convex polytopes generated by wheels will have unbounded 

metric dimension. It is natural to ask for characterization of wheel related graphs with unbounded metric dimension. 
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