
 

~ 455 ~ 

 
ISSN Print: 2394-7500 

ISSN Online: 2394-5869 

Impact Factor: 8.4 

IJAR 2023; 9(6): 455-459 

www.allresearchjournal.com 

Received: 18-04-2023 

Accepted: 26-05-2023 

 

Dr. Md. Alam 

Assistant Professor, 

Department of Mathematics, 

R.K. College, Madhubani, 

Bihar, India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Dr. Md. Alam 

Assistant Professor, 

Department of Mathematics, 

R.K. College, Madhubani, 

Bihar, India 

 

Mathematical stochastic calculus on Riemannian 

manifolds 

 
Dr. Md. Alam 

 
Abstract 

Mathematical stochastic calculus on Riemannian manifolds is a burgeoning field that merges 

differential geometry with probability theory to study stochastic processes on curved spaces. This 

abstract presents an overview of key concepts and results in this interdisciplinary area. 

The foundation of stochastic calculus on Riemannian manifolds lies in extending the notions of 

stochastic differential equations (SDEs) and stochastic integration from Euclidean spaces to manifolds. 

Key tools include the theory of connections and parallel transport, which provide a framework for 

defining covariant derivatives and stochastic flows on manifolds. 

Central to the study of stochastic processes on Riemannian manifolds is the development of stochastic 

parallel transport, which generalizes the concept of parallel transport to incorporate stochastic effects. 

This allows for the analysis of stochastic differential equations driven by Wiener processes or other 

types of stochastic processes on curved spaces. 

Applications of mathematical stochastic calculus on Riemannian manifolds abound in various fields 

such as mathematical finance, physics, and biology. For instance, in finance, it enables the modeling of 

asset prices and portfolio optimization in markets where asset prices evolve on curved spaces. In 

physics, it provides a framework for describing the behavior of particles subject to random fluctuations 

in curved spacetimes. In biology, it aids in understanding the dynamics of biological systems evolving 

on complex manifolds. 

Overall, mathematical stochastic calculus on Riemannian manifolds offers a rich theoretical framework 

for studying stochastic processes in curved spaces, with diverse applications across different scientific 

disciplines. Ongoing research in this area continues to deepen our understanding of the interplay 

between geometry and randomness, paving the way for new insights and applications in various fields. 
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Introduction 

Stochastic differential equations in diffusion theory in a d-dimensional Euclidean space Rd 

with continuous pathway are defined by the fundamental d-dimensional Wiener process Wa 

(t). On a Riemannian manifold Md, the fundamental Wiener process is difficult to handle. By 

using an inadequately posed formulation of a stochastic differential equation, it is not assured 

that its solution remains on the manifold Md, which leads to inconsistent results. The key 

idea in the mathematical concept of diffusion on general d-dimensional Riemannian 

manifolds Md (with definite metric signature) is to define a stochastic process on the curved 

manifold using the fundamental Wiener process, each component of which is a process in the 

Euclidean space Rd [1-2]. Intuitively, we can understand this concept as follows. Consider a 

two-dimensional stochastic motion of a particle on a plane. If the trajectory of the particle is 

traced in ink and a sphere on the plane is rolled along the stochastic curve without slipping 

the resulting transferred path defines a random curve or a stochastic Markovian process on 

the sphere. This method can be applied for diffusion on a general Riemannian manifold. The 

tangent space of a Riemannian manifold is endowed with Euclidean structure and, therefore, 

we can move the manifold in the tangent space by construction of a parallel translation along 

the stochastic curve with the help of the orthonormal frame vectors ea=ei
a (x) i (i, a=1, . . . , 

d) and the Christoffel connection coefficients j
ib, x=(x1, . . . , xd), i=/xi. In local 

coordinates on a Riemannian manifold, the infinitesimal motion of a smooth curve ci (t) in 

Md is that of i(t) in the tangent space (which can be identified with Rd) by using a parallel 

transformation: dci=ei
a (x)da and dei

a(x)=−i
mlel

adcm. Therefore, a random curve can be  
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defined in the same way by using the canonical realization of a d-dimensional Wiener process (defined in the Euclidean space) 

and substituting da→dWa(t). Thus, the stochastic differential equations describing diffusion on a Riemannian manifold in the 

orthonormal frame bundle O(M) with coordinates O(M)={xi, ei
a} are given by. 

 

dxi() = ei
a()∘dWa

 + bi()d, 

 

dei
a()= −i

mlel
a∘dxm().                        (1) 

 

Here abei
a[x()]ei

b[x()]=gij, igj
a=j

ikek
a, gij is the Riemannian metric, and ab is the flat Euclidean metric, where ab is the 

Kronecker symbol. The components of the elementary Wiener process dWa=Wa(t+t)−Wa(t) are defined in the Euclidean 

space with the probability density P(Wa) = 












tD

twa

2

)]([ 2  and with the expectation values Wa=0 and Wa()Wb(+s)=Dsab. bi’s 

are the components of an arbitrary tangential vector and D is the diffusion constant, which here is independent on the time and 

space variables. Equation (1) is defined in the Stratonovich calculus (denoted by the symbol ∘). 
Associated to each diffusion process, there is a secondorder differential operator denoted as the generator A of the diffusion. 

Diffusion processes in a d-dimensional Euclidean space are described by stochastic differential equations of the form, 

 

dXi =i
a(,X) dWa + bi(,X)d .                      (2) 

 

X=(X1, . . . , Xd)Rd is a stochastic process with X(0)=x; x =(x1, . . . , xd), and  is the time (0). The diffusion coefficients 

i
a(,X) are given matrices and the drift coefficients bi(,X) are coefficients of a smooth vector field. Wa’s are the components 

of the elementary Wiener process. Equation (2) can be transformed into an integral equation. 

 

 
 

 
0 0

0 .),(),( dsXsbdWXsXX ia

s

i

a

ii
                 (3) 

 

The stochastic integral in the second term of Eq. (3) is defined as the limit 

   



0

1

* )]()()[,(),(
n

ni i

a

i

a

i

i

a

a

s

i

a sWsWXsdWXs as n→. This integral depends on the choice of the 

intermediate point s*
i. With the choice s*

i=si−1 (postpoint rule), the Ito stochastic integral is defined. The Ito integral is a 

Markovian process and plays a fundamental role in the theory of diffusion processes and most of mathematical treatments can 

only rigorously proven by using this calculus. Alternatively, choosing s*
i=si−1 (midpoint rule) the Stratonovich stochastic 

integral is defined. The Stratonovich integral has the advantage of leading to ordinary chain rule formulas under a 

transformation. This property makes the Stratonovich integral natural to use for stochastic differential equations on 

Riemannian manifolds. However, in general Stratonovich integrals are not Markovian processes, which hinders rigorous 

mathematical treatments in most cases. Note that the chosen interpretation has to be denoted in the differential equation. The 

symbol i
a(, X)dWa implies the Ito integral interpretation and i

a (,X)∘ dWa
 the Stratonovich interpretation. 

With the Ito interpretation, the solution Xi
 of Eq. (2) is denoted as an Ito process if the diffusion and drift coefficients satisfy 

the Lipschitz condition, and i
a(,X) is adapted to the fundamental Wiener process Wa

. An Ito process has the important 

property of being Markovian. Then Y = f(X) is also an Ito process. Associated to an Ito process is the diffusion generator A 

of X, which is defined to act on a suitable function f by. 

 

Af = 
t

xfXfEW

t

)()]([
lim

0





 ,                      (4) 

 

Where x=Xo is the initial point of X. For the stochastic process described by Eq. (2), A is given by [3-4]. 

 

Af =
2

D
abi

a(,X) i
b(,X)iif+bi(+X)if                   (5) 

 

The generator A describes how the expected value u(t,x)=Ex[f(X)] of any smooth function f of X evolves in time and satisfies 

the following equation. 

 

),,(),( xAuxu 






                       (6) 

 

With u(0,u)= f(x). Equation (6) is denoted as the Kolmogorov’s backward equation. The Fokker-Planck equation (or forward 

Kolmogorov equationdescribes how the probability density function (,x) of X evolves with time. The probability density 

function can be used to calculate the expected value Ex[f(X)] by Ex[f(X)] = f(x)(,x)dx1dxd, where  in the domain of 
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the d-dimensional space of the variables X1, . , Xd. The Fokker-Planck equation within the Ito integral interpretation is given 

by the following equation. 

 

),,(),( * xAx 






                       (7) 

 

With the adjoint operator A*. 

 

.),(),(
2

* fXbfX
D

fA i

i

j

aji

ab                    (8) 

 

Since the stochastic calculus on Riemannian manifolds is naturally formulated in the Stratonovich integral interpretation, we 

will consider the connection between both types of integrals. Let us formulate the stochastic differential equation (2) with the 

Ito interpretation by a corresponding equation with the Stratonovich interpretation. 

 

dXi = .),(
~

),(~  dXbdWX iai

a                      (9) 

 

There exists a connection between Ito and the Stratonovich integrals [5-6], which allows to associate the diffusion and drift 

terms in one of the interpretations with the other. 

 

).,(~),(

),(),(
2

),(),(
~

XX

XX
D

XbXb

i

a

i

a

i

bi

j

a

abii








                (10) 

 

Substituting ),(
~

Xb i   into Eq. (5), the diffusion operator A in the Stratonovich interpretation is. 

 

.),(
~

),(),(
2

i

i

j

i

bi

i

a

ab xbxx
D

A                    (11) 

 

The Fokker-Planck equation (7) with respect to the Stratonovich interpretation is then given by. 

 

).,(),(
~

)],(),([),(
2

),(

xxb

xxx
D

x

i

i

i

bi

i

ai

ab













                (12) 

 

Introducing the fundamental vector fields. 

 

,),(
~

,),( 0 i

i

i

j

aa xbLxL                        (13) 

 

The generator A of the stochastic process in the Stratonovich interpretation can be expressed by the operators La, L0 as follows. 

 

A = .
2

0LLL
D

ba

ab                          (14) 

 

Equation (14) is an important formula for the calculus on Riemannian manifolds. On a Riemannian manifold, the driving 

Wiener process Wa of a stochastic differential equation is difficult to handle. In differential geometry for a general d-

dimensional Riemannian manifold Md (with definite metric signature) equipped with a Christoffel connection j
ib, it is possible 

to lift a smooth curve ci(t) in Md to a horizontal curve in the tangent bundle TM (which is endowed with a Euclidean structure) 

by using the bundles of orthonormal frames ea=ei
a(x)i(i,a=1, . , d). The orthonormal frame bundle O(M) is described by the 

local coordinates {r=(xi,ei
j)}=O(M). The infinitesimal motion of a smooth curve xi(t) in Md is that of i(t) in O(M) described by 

the ordinary differential equations for a parallel transport. 

 

dxi = ei
a(x)da, 

 

dei
a(x) = −i

mlel
adxm.                         (15) 
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Here abei
a(x)ei

a(x)=gij, iej
a =−j

ibeb
a gij is the Riemannian metric and ab is the flat Euclidean metric, where ab is the 

Kronecker symbol. ri(t) is called the horizontal lift of the curve xi(t) to the orthonormal frame bundle O(M) and it lies in the 

Euclidean space Rd+d2. The horizontal curve i(t) corresponds uniquely to a smooth curve in the tangent space (which can be 

identified with an Euclidean space Rd). Correspondingly, a random curve can be defined in the same way as in Eq. (15) by 

using the canonical realization of a d-dimensional Wiener process and substituting da→dWa(t). Therefore, the stochastic 

differential equation describing diffusion on a Riemannian manifold is [7-8]. 

 

dxi = ei
a() ∘ dWa + bid, 

 

dei
a() = − mle1

a()∘dxm,                        (16) 

 

Where the components of an arbitrary tangential vector bi are additionally introduced for a more general situation with an 

account of an external force field. 

The derivation of the Kolmogorov backward equation with the definition of the diffusion operator AO(M) can be performed by 

the same rules, as in Euclidean space in the Stratonovich calculus. Corresponding the definition of the fundamental vector 

fields La and L0 in Eq. (13), one can now introduce the fundamental horizontal vector fields Ha and H0 on O(M) for the 

extended stochastic differential equation system Eq. (16). 

 

Ha = ei
a i

b

l

amli e
e

x 







 

 

H0 = bi(,X)i −i
mlel

a ()bm
i

ae


,                      (17) 

 

And the operator AO(M) for the stochastic process in the orthonormal frame bundle is given by. 

 

AO(M) = .
2

0HHH
D

ba

ab                        (18) 

 

AO(M) is the horizontal lift of the diffusion generator AM on the manifold to the orthonormal frame bundle. Obviously, the 

projection of a function in O(M) to M with f(r) = f(x,0), r=(xi,ei
j), satisfies the relation. 

 

AO(M)f(r) = AMf(x),                         (19) 

 

Where AM= 







 i

i

Mi

i

j

j

bi

i

a

ab b
D

bee
D

2
)(

2
  and M =gijij+gijk

ijk is the Laplace-Beltrami operator. The generalized 

Kolmogorov backward equation on a Riemannian manifold is obtained by. 

 

),(
2

),( xub
D

xu i

i

M 















.                    (20) 

 

The Fokker-Planck operator on a Riemannian manifold cannot be derived directly like in the Euclidean case. But as explained 

above, this operator is given by the adjoint of the diffusion generator A* (which includes the volume element g , 

g=det{gij}). Since the Laplace-Beltrami operator is selfadjoint M=*
M, the generalized Fokker-Planck equation on a 

Riemannian manifold takes the form. 

 

,
2

)( 



Mx

D
bdiv


                      (21) 

 

Where divx(b)=g−1/2i(g1/2bi) is the divergence operator in the Riemannian manifold, =(x,|y,0) is the transition 

probability with the initial condition (x,0|y,0)=(x-y) and adequate boundary conditions at infinity. The probability density 

(x,) is determined by the same equation with the initial condition (x, =0)= 0(x). 

Corresponding to Eqs. (17) and (18), the diffusion generator AO(M) on O(M) can be projected on Md with f(r)= f(x,0), r=(xi,ei
j) 

using the relation AO(M)f(r) =AMf(x), where. 
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AM = 







 i

i

Mi

i

j

i

bi

i

a

ab b
D

bee
D

2
)(

2
                 (22) 

 

and M=gijij−gijk
ij k is the Laplace-Beltrami operator on the manifold Md. The generalized Fokker-Planck equation is 

obtained by the adjoint of the diffusion generator A*
M (which includes the volume element. 

g , g=det{gij}). Since the Laplace-Beltrami operator is self-adjoint, M=*
M, this equation takes the form. 

 

,
2

)( 



Mx

D
bdiv


                      (23) 

 

Where divx(b=g−1/2i(g1/2bi) is the divergence operator on the Riemannian manifold,  =(x,|y,0) is the transition 

probability with the initial condition (x,0|y,0)=(x-y) and adequate boundary conditions at infinity. The probability density 

(xi,) is determined by the same equation with the initial condition (x,=0)=0(x). 

A remarkable feature of Markovian diffusion on a Riemannian manifold is the supposition that for the diffusion coefficients in 

Eq. (1) only the orthonormal frame coefficients ei
a(x) are admissible, which are directly related to the geometry of the 

Riemannian manifold. In contrast, on Euclidean manifolds, a much more general class of diffusion coefficients are permitted. 

 

Conclusion 

The field of mathematical stochastic calculus on Riemannian manifolds integrates differential geometry with probability theory 

to analyze stochastic processes on curved spaces. By extending stochastic differential equations (SDEs) and stochastic 

integration from Euclidean spaces to manifolds, it provides a robust framework for examining random processes in diverse 

scientific fields. 

Key elements of this calculus include the theory of connections and parallel transport, which facilitate the definition of 

covariant derivatives and stochastic flows on manifolds. The stochastic parallel transport is particularly central, allowing for 

the generalization of parallel transport to include stochastic effects. 

Applications of this advanced mathematical framework are widespread, ranging from modeling asset prices and portfolio 

optimization in finance to describing particle behavior in curved spacetimes in physics and understanding biological system 

dynamics on complex manifolds in biology. 

The methodology employs the Stratonovich and Ito integrals, with a preference for the former due to its natural alignment with 

differential geometry, despite its non-Markovian nature which complicates rigorous treatments. The research also delves into 

the connections between these integral interpretations, the formulation of the Kolmogorov backward equation, and the Fokker-

Planck equation on Riemannian manifolds, enhancing the theoretical underpinnings and practical applications of stochastic 

processes in curved spaces. 

This intersection of geometry and randomness continues to evolve, offering new insights and potential applications across 

various scientific disciplines, ultimately deepening our understanding of stochastic processes on Riemannian manifolds. 
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