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Abstract 

Regression analysis is a statistical technique used to examine the relationship between (dependent and 

independent) variables. Regression analysis is typically used by academics to examine the impact of 

several independent factors, or explanatory variables, on a single variable, or response variable. The 

regression equation is used by the investigators to explain how the response and explanatory variables 

relate to one another. We need to meet many assumptions to estimate the relationship (model). Several 

techniques, including the ordinary least squares (OLS), and maximum likelihood approach (MLE) can 

be used to estimate the parametric regression model. Moreover, the Spline or Kernel methods can be 

used for estimating nonparametric regression. In this work, we attempt to demonstrate the significant 

and practical method for estimating the nonlinear model. Separable nonlinear least squares (SNLS) 

method is a special case of nonlinear least squares (NLS) method, for which the objective function is a 

mixture of linear and nonlinear functions. In this technique, the nonlinear function (model) can be 

linearized by applying special transformation or by using expanded Taylor expansion to linearize 

functions. The separable nonlinear least squares (SNLS) are a very flexible technique that is used to 

linearize the nonlinear functions. The SNLS can be used after linearizing the nonlinear function 

through the transformation of the variable of interest. Moreover, the SNLS can be used to approximate 

a wide variety of functional shapes. The results show that the SNLS performed very well in comparison 

with the NLS. We can observe from the model goodness residuals standard error, AIC, and BIC, that 

the SNLS method has provided an estimate equivalent to that NLS provided. Therefore, we can say that 

it is useful to estimate nonlinear model separable. Furthermore, we plan to apply the SNLS to a more 

complex model using different simulation studies to check the validity of the method.  

 

Keywords: Linear, nonlinear, separable nonlinear least squares, Taylor expansion, gauss-newton 

method 

 

Introduction 

The statistical tool used to investigate the relationship between (dependent and independent) 

variables is called regression analysis. Usually, researchers use regression analysis to analyze 

the effect of some independent variables (explanatory variables) on one variable (response 

variable) [1, 2]. The investigators use the regression equation to describe the relationship 

between the response and explanatory variables. The regression model includes one or more 

hypothesized regression unknown parameters [3]. The regression model can be estimated 

using several methods such as ordinary least squares (OLS) and maximum likelihood method 

(MLE) for the parametric regression model [4]. Nonparametric regression can be estimated by 

using the Kernel method or Spline method [5].  

The most well-known and classic estimators for regression coefficients are the ordinary least 

squares (OLS) estimators obtained by minimizing the sum of squared residuals [6]. The least 

squares method needs the error to be assumed as independent and identically distributed with 

mean zero and constant variance (the normality assumption). Under the Gauss-Markov 

theorem, the estimated parameters are the best linear unbiased estimators (BLUE). In 

practice, there are many problems caused when the assumptions are violated, e.g. non-

normality, heteroscedasticity, and of particular interest is the nonlinear independence of 

regresses (independent variables) [7].  
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Unlike the linear regression model, the nonlinear regression 

model is not restricted to belonging to a specific relation. To 

apply the linear regression model, we need to satisfy several 

assumptions such as linearity, no multicollinearity, and 

normality. While to apply the nonlinear regression, we need 

a model to fit with data and an initial guess to start 

estimating the model parameters. The Gauss-Newton 

method (GNM) is the most popular method that is use to fit 

the nonlinear regression model [8].  

When the relationships in data are not linear, additional 

flexibility is needed to apply the traditional approach of the 

Nonlinear least squares. However, recent advances in 

statistical techniques help to analyze data where questions of 

nonlinearity arise [9]. Smoothing splines and semi-parametric 

regression, which allow more flexibility than the nonlinear 

regression models, are examples of these techniques. This 

work will provide a review of nonlinear least squares and 

separable nonlinear least squares with applications of these 

techniques. Separable nonlinear least squares (SNLS) 

method is a special case of nonlinear least squares (NLS) 

method, for which the objective function is a mixture of 

linear and nonlinear functions [10]. 

Moreover, in this work, we will introduce basic concepts of 

the separable nonlinear least square technique, where the 

basic idea will be clarified by an example. Whereas, the 

separable least squares regression is concerned with the 

flexible incorporation of nonlinear functional relationships 

in regression analyses. It has many applications in many 

different areas, especially in operations research, and 

industry engineering [11]. Furthermore, the separable 

nonlinear least square can be used in many practical cases 

such as fuzz regression model [12, 13]. In details, the 

advantages and disadvantages of these advanced regression 

techniques will be evaluated and discussed for a partly 

linear regression model and partly nonlinear regression 

model. 

 

Methodology  

The nonlinear models are used to describe a more 

complicated relationship between the response and 

explanatory variable. Moreover, when the relationships 

between the response and explanatory are not linear relation 

more flexibility is needed to apply the traditional approach 

of the Nonlinear least squares. Unlike the linear regression 

model, the parameters may not linear function in the 

predictors. Therefore, the assumptions of applying ordinary 

least squares are violated [14]. The basic form for a nonlinear 

model between the response y and a predictor x is given as, 

 

Y = f(X;  θ) + ε 

 

where, f is a nonlinear function involving the predictor and 

the parameter vector θ, relating E(Y), and θ are the vector of 

P parameters [15]. Also, the error term is assumed to have the 

same properties as in the linear regression models. In the 

nonlinear regression models, at least one of the derivatives 

of the expectation function f with respect to the parameters 

will have at least one of the parameters [2]. 

 

Estimation of Nonlinear Regression model 

Nonlinear Least Squares Estimates (NLS) 

The least squares method is used to estimate the parameters 

of the nonlinear models. To estimate the parameters using 

nonlinear least squares, like in linear least squares case. The 

nonlinear regression model, given by, 

 

Y = f(X;  θ) + ε 

 

Where 

Y = (y1, y2, … , yn)
T, f(X; θ) =

(f(X1, θ), f( X2, θ), … , f(Xn, θ))T, X = (X1, X2, … , Xp)
T, θ =

(θ1, θ2, … , θp)
T, and ε = (ε1, ε2, … , εn)

T;  ε~NID(0, σ2I) 

 

The least squares estimate of θ, labeled by θ̂, is the choice 

of parameters that minimizes the sum of squared residuals 

 

ss(θ) = ∑[Yi − f(Xi; θ)]2
n

i=1

, i = 1,2, … n 

 

 Or, it can be written as:  

 

ss(θ) = εTε = [Y − f(X; θ)]T[Y − f(X; θ)] 
 

The partial derivatives of ss(θ), with respect to each θj in 

turn, set equal to zero to obtain the p normal equations [16]. 

Each normal equation has the general form 

 
∂

∂θj

[ss(θ)]θ=θ̂ = 0 

 

∑[Yi − f(Xi; θ)][
∂

∂θj
f(Xi; θ)]θ=θ̂ = 0, j = 1,2, … , p

n

i=1

 

 

Where, 
∂

∂θj
f(Xi; θ) the partial derivatives of a nonlinear 

model are functions of the parameters. A major difficulty 

with nonlinear least squares arises in trying to solve the 

normal equations for θ̂, since clear solutions cannot be 

obtained, iterative numerical methods are used. These 

methods require initial guesses, or starting values. For the 

starting value parameters are labeled as θ0 and find θ1, θ2, … 

until we obtain a sufficiently small adjustment being made 

at each step, when this happens, the process is said to have 

converged to a solution [17]. 

The Gauss-Newton method (GNM) uses a linearization 

based on a Taylor expansion in the parameter space to 

estimate parameter values. For the Taylor expansion of 

f(Xi; θ) around the starting value θ0, to obtain a linear 

approximation of the model in the region nears the starting 

values. If θ is close to θ0, the following approximation 

holds: 

 

f(Xi;  θ) ≈  f(Xi;  θ
0) + ∑[

∂

∂θj
f(Xi;  θ

j)]
θ=θ0

(θj − θj
0)

p

j=0

 

 

Where, θ = (θ1, θ2, … , θp)
T
,  θ0 = (θ0

0, θ1
0, … , θp

0)
T
, fi

0 =

f(XI;  θ
0), βj

0 = (θj − θj
0), and Fij

0 = [
∂

∂θj
f(Xi;  θ)]

θ=θ0
 

 

Therefore, the following equation can be written as 
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f(Xi;  θ) = fi
0 + ∑Fij

0 βj
0

p

j=0

 

 

 

Also, the nonlinear model can be written as  

 

Yi
0 = ∑Fij

0 βj
0

p

j=0

+ εi, where Yi
0 = Yi − fi

0  

 

Which is of the similar form of the multiple linear 

regression model. Using the matrix notation can be written 

as 

 

Y0 = F0β0 + ε 

 

Where,  

 

 Y0 =

[
 
 
 
 
Y1

0

Y2
0

....
Yn

0]
 
 
 
 

, F0 =

[
 
 
 
 
F10

0 F11
0 . . . F1p

0

F20
0 F21

0 . . . F2p
0

...
Fn0

0

...
Fn1

0

. . . .
..
.

..

.

..

.

..
Fnp

0
]
 
 
 
 

, β0 =

[
 
 
 
 
 
β0

0

β1
0

....
βp

0
]
 
 
 
 
 

, and ε =

[
 
 
 
 
ε1
ε2

....
εn]

 
 
 
 

 

 

The least squares estimate of the parameters β0 are obtained 

as 

 

δ0 = (F0T
F0)

−1

F0Y0 

 

New values of the parameters are obtained by adding the 

estimated shift to the initial values using Gauss-Newton 

increment by  

 

θ1 = θ0 + δ0

θ2 = θ1 + δ1
.
..

θa = θa−1 + δa−1

 

 

Where, δa is called the Gauss-Newton increment. The 

model is then linearized about the new values of the 

parameters and linear least squares are again applied to find 

the second set of adjustments, and so forth until the desired 

degree of convergence is attained [18]. The adjustments 

obtained from the Gauss-Newton method can be too large 

and bypass the solution, in which case the residual sum of 

squares may increase at that step rather than decrease. 

Moreover, the Gauss-Newton algorithm will converge only 

with a good initial guess when the matrix F0 is a full rank 

matrix in a neighborhood of the least square’s solution [19]. 

Otherwise, there is no guarantee that the Gauss-Newton 

algorithm will converge.  

In practice, the previous technique can be used only when 

the function f(Xi;  θ) is continuously and differentiable 

respect to the parameter θ. If the function f(Xi;  θ) is not 

continuous and differentiable with respect to the parameter 

θ, it is usually necessary to modify the model or use another 

technique to estimate the nonlinear model. To apply the 

Gauss-Newton Algorithm for the nonlinear model, we need 

to find the Taylor expansion for the model. 

 

f(Xi, θ) = θ1(1 − θ2e
−θ3X) + εi 

 

Gauss-Newton Algorithm for (NLS) 

Taylor expansion for f(X𝑖;  θ) is 

  

f(Xi;  θ) ≈  f(Xi;  θ
0) + ∑[

∂

∂θj
f(Xi;  θ

j)]
θ=θ0

(θj − θj
0)

3

j=0

 

 

f(Xi;  θ) ≈  f(Xi;  θ
0) +

∂

∂θ1
[θ1(1 − θ2e

−θ3X)](θ1 − θ1
0) 

 

+
∂

∂θ2

[θ1(1 − θ2e
−θ3X)](θ2 − θ2

0) +
∂

∂θ3

[θ1(1 − θ2e
−θ3X)](θ3 − θ3

0) 

f(Xi;  θ) ≈  f(Xi;  θ
0) + (1 − θ2e

−θ3X)(θ1 − θ1
0) − θ1e

−θ3X(θ2 − θ2
0)

+ θ1θ2Xe−θ3X (θ3 − θ3
0) 

 

Initial guesses or starting values are required for estimating 

the model parameters using Gauss-Newton algorithm. 

Moreover, we can inference about the model parameters by 

applying several assumptions around the estimated 

parameters θ̂ [20]. 

1. The estimated parameters θ̂ has approximate normal 

distribution with approximate mean 𝜃 and approximate 

covariance matrix σ2(F′F)−1.  

2. An approximate (1 − 𝛼)100% joint confidence region 

for θ, which is an ellipsoid is given by:  

3. (θ − θ̂)′F̂′F̂(θ − θ̂) ≤ ps2F(p,n−p,α) 

4. An approximate (1 − 𝛼)100% marginal confidence 

interval for θi is  

5. θ̂i ± t
(n−p,

α

2
)
se(θ̂) 

6. An approximate (1 − 𝛼)100% confidence interval for 

the expected response variable at X0 is 

7. f(θ̂, X0) ± t
(n−p,

α

2
)
s√V0

′(F̂′F̂)−1V0 

8. An approximate (1 − 𝛼)100% confidence interval for 

the predicted mean of the response variable at X0 is: 

f(θ̂, X0) ± t
(n−p,

α

2
)
s√1 + V0

′(F̂′F̂)−1V0 ;  V0

= [
∂f(θ̂, X0)

∂θ
]
θ=θ0

 

 

Separable of Nonlinear Least Squares (SNLS) 

In the separable least squares, the objective function is a 

mixture of two components (linear and nonlinear functions) 
[21]. The separable of nonlinear least squares is a special case 

of nonlinear least squares in which the function can be 

derived into two parts [22]. The method can be used in many 

applications such as numerical analysis, neural networks, 

and Environmental Sciences. However, the SNLS is an 

invalid method when there are some constrains on the linear 

part of variables [23, 24]. Here, we proposed SNLS to solve a 

function that was solved by NSL. 

  
f(Xi, θ) = θ1(1 − θ2e

−θ3X) + εi = θ1 − θ1θ2e
−θ3X = β0 + β1X̃ + εi,  

 

β0 = θ1, β1 = −θ1θ2, and X̃ = e−θ3X  
 

Taylor expansion for f(X̃𝑖;  θ3) is 

  

f(X̃i;  θ3) ≈  f(X̃i;  θ3
0) + ∑ 

(−θ3X)j

j!

∞

j=1
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f(X̃i;  θ3) ≈  f(X̃i;  θ3
0)−θ3X̃ +

(θ3X̃)2

2!
−

(θ3X̃)3

3!
+ ⋯ 

 

For any given value for θ3, the θ1 and θ2 can be estimated 

by applying linear least squares method as:  

 

Estimating Nonlinear Model 

The study implemented to comparison between the 

estimated model using nonlinear least squares (Gauss-

Newton algorithm) and separable nonlinear least squares. 

The study was carried out to estimate the nonlinear model 

parameters (θ1, θ2, and θ3). We used RStudio to generate 

the estimated parameters of the  

f(Xi, θ) = θ1(1 − θ2e
−θ3X) + εi using data science about 

chloride ion transport through blood cell walls the data set 

includes two factors (y donates the chloride concentration 

(in percent) and x donates to the time (in minutes)). For 

more details, see [25]. The review study was performed to 

compare between the nonlinear least squares and separable 

nonlinear least square. In this study, we give a short 

application on the separable nonlinear least square method 

unseparated scheme for NLS. The results, of estimating 

nonlinear model using NLS and SNLS are demonstrated in 

Table 1:  

 
Table 1: Estimated model parameters using nonlinear least squares and separable nonlinear least squares 

 

Parameters 
NLS SNLS 

Estimate St. Error T P-value Estimate St. Error T P-value 

𝜃1 39.09 0.974 40.12 <2e-16*** 28.835 1.0952 26.328 <2e-16*** 

𝜃2 0.828 0.008 99.80 <2e-16*** 0.638 0.1132 5.634 7.64e-07*** 

𝜃3 0.158 0.010 15.18 <2e-16*** 0.227 1.5085 -15.113 < 2e-16*** 

 
Residuals standard error=1.92 

AIC=-20.09 & BIC=-12.13 

Residuals standard error=1.95 

AIC=-18.12 & BIC=-10.17 

 

From the results, we can see that the estimated model using 

SNLS is comparable with the estimated model using NLS. 

Moreover, based on the model goodness of fits both 

methods NLS and SNLS performed well with the data. The 

estimated model using SNLS still performed well even 

though the estimated value of the parameter θ1 (28.835) was 

slightly different from the estimated value of θ1 using NLS 

(39.09).  

 

 

  
 

Fig 1: The typical residuals of nonlinear regression model with estimated model using NLS and SNLS 

 

The above plots, show the mathematical function that 

explains the relationship between the dependent variable y 

and the response variable x throughout the nonlinear 

relationship. It can be observed from the above figures, that 

the estimated model using SNLS is close to the estimated 

model using NLS. However, the relationship looks linear 

which can be easily estimated by OLS but the linearity 

assumption for the model parameters is violated.  

 

Conclusion  

The statistical tool used to investigate the relationship 

between (dependent and independent) variables is called 

regression analysis. Usually, researchers use regression 

analysis to analyze the effect of some independent variables 

(explanatory variables) on one variable (response variable. 

The investigators use the regression equation to describe the 

relationship between the response and explanatory variables. 

The relationship might be linear and might be a nonlinear 

relationship. To estimate the relationship (model), we need 

to satisfy several assumptions. The parametric regression 

model can be estimated using several methods such as 

ordinary least squares (OLS) and maximum likelihood 

method (MLE). While the nonparametric regression can be 

estimated by using the Kernel method or Spline method. 

In this work, we try to show the important and useful 

technique for estimating the nonlinear model. In this 

technique, the nonlinear function (model) can be linearized 

by applying special transformation or by expanding using 

Taylor expansion to linearize functions. The separable 

nonlinear least squares are a very flexible technique that 

used to linearize the nonlinear functions. The SNLS can be 

used after linearizing the nonlinear function through the 

transformation of the variable of interest and the explanatory 

variables. Moreover, the SNLS can be used to approximate 

a wide variety of functional shapes. The results show that 

the SNLS performed very well in comparison with the NLS. 

We can observe from the model goodness residuals standard 

error, AIC, and BIC that the SNLS method has provided an 

estimate equivalent to that NLS provided. Therefore, we can 

say that it is useful to estimate nonlinear model separable. 
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Moreover, we plan to apply the SNLS to a more complex 

model using different simulation studies to check the 

validity of the method.  
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